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Researchers have identified challenges students face when modeling dynamic situations. This report 
discusses the results of semi-structured clinical interviews with ten prospective secondary 
mathematics teachers who were provided with a dynamic image of a growing and shrinking cone. 
We asked the students to graph the relationship between the surface area and the height of the cone. 
We identify four themes in the students’ solution approaches and discuss the implications of these 
approaches. Specifically, we discuss the themes with respect to relationships between the students’ 
solutions and their images of the growing and shrinking cone, including the extent that they 
leveraged this image to determine their solutions. 
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The authors of the Common Core State Standards for Mathematics (CCSSM) (National 
Governors Association Center for Best Practices, 2010) argued students should have the opportunity 
to construct and compare a multitude of relationships including those that have constant rates of 
change and those that have varying rates of change. They also identified modeling and reasoning 
quantitatively as two practices that should permeate students’ mathematical experiences. These 
policy calls are in line with researchers who have identified students’ quantitative and covariational 
reasoning–students conceiving situations as composed of measurable attributes that vary in tandem–
as critical to numerous K-16 concepts (Ellis, 2007; Johnson, 2015a; Moore & Carlson, 2012; 
Thompson, 2011). These same researchers have argued that much is to be learned about how students 
approach dynamic situations, including the extent that these approaches are rooted in constructing 
structures of quantities and relationships between these quantities. Further, researchers have called 
for increased attention to exploring students’ activities as they make sense of situations where they 
conceive of multiple quantities covarying (Castillo-Garsow, Johnson, & Moore, 2013; Thompson, 
2011). 

We discuss ten prospective secondary mathematics teachers’ (heretofore referred to as students) 
solutions to a task in which they graphed a relationship between the surface area and height of a cone 
as the cone changed in size (but maintained a constant slant-angle). Using our analyses of the 
students’ activities in semi-structured clinical interviews (Clement, 2000), we illustrate four themes 
in their solution approaches. With respect to these themes, we discuss how they used their images of 
the situation to determine a relationship between the surface area and height of a cone. Collectively, 
these themes provide glimpses into students’ thinking as they construct relationships between 
quantities in what we intended to be a three-dimensional context. 

Literature Review and Motivation 
Saldanha and Thompson (1998) described covariation to include, “imagistic foundations for 

someone’s ability to ‘see’ covariation” (p. 298). By ‘see’ covariation, we infer Saldanha and 
Thompson did not mean that covariation and quantities are independent of the mind or merely 
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perceptual objects. Instead, we interpret them to refer to someone constructing and re-constructing a 
dynamic situation to the point that they envision it as entailing measurable attributes and an 
understanding or anticipation of how these attributes change in tandem. Additionally, we characterize 
a sophisticated image of covariation to include the capacity to ‘replay’ one’s image of the dynamic 
situation while holding in mind how these attributes are changing in tandem. In this regard, how 
students operate and reason in what they come to understand a covariational situation is directly tied 
to their images of that situation.  

Students’ images are important for their construction of mathematical objects (Izsák, 2004; 
Thompson, 1994). Focusing on students’ images in applied problems, Moore and Carlson (2012) 
examined students’ activities for the purpose of determining distinguishing features of students’ 
images with respect to the formulas and graphs that the students produced when modeling and 
representing situations with covarying quantities. Most relevant to the present work, the authors 
noted that despite the students’ creations of mathematical products that an observer might deem 
incorrect with respect to the intended situation, these mathematical products were consistent with the 
students’ images of the situations. For instance, on a task that included a box with varying base 
dimensions, some students envisioned a box with fixed base dimensions. As a result, these students 
determined a volume formula that captured a base with fixed dimensions. Based on their findings, the 
authors (Moore & Carlson, 2012) argued that researchers and educators should give more attention to 
students’ images of problem contexts including determining how these images play a role in the 
mathematical products students construct.  

Theoretical Perspective 
We leverage tenets of radical constructivism by approaching knowledge as actively built up by 

the individual in ways that are idiosyncratic to that individual and fundamentally unknowable to 
another individual (von Glasersfeld, 1995). Hence, we approach quantities as personally constructed 
measurable attributes (Steffe, 1991). Likewise, relationships between quantities are constructed by 
the individual, with these relationships being influenced by the individual’s understanding of each 
quantity and their image of the relevant situation (along with other potential influences). It follows 
that we do not assume that students see situations that we provide them with in the same way that we 
do or intend for them to do (Thompson, 2011). For instance, a student may imagine a cone growing 
smoothly as a video suggests, growing in discrete snapshots corresponding to adding to the cone in 
sections, or physically changing in some other fashion (e.g., stretching the cone as if it is made of 
malleable rubber).  

Although we take the stance that students’ knowing and thinking is fundamentally unknowable to 
us as researchers, we can make inferences about students’ thinking based on our interpretations of 
their words and actions. Steffe and Thompson (2000) referred to such inferences or models as the 
mathematics of students. Our goal was to characterize students’ images of a situation and the 
mathematical products they created based on our inferences of their activities when given a dynamic 
situation as described in the following sections. 

Methodology 
We conducted a series of three semi-structured task-based clinical interviews (Clement, 2000) 

with ten students (eight female, two male). The students were enrolled in a secondary mathematics 
teacher education program at a large university in the southeast United States. At the time of the third 
interview–the interview we focus on here–these students had completed their first content course in 
the secondary mathematics education program, as well as at least a full calculus sequence and two 
additional mathematics courses (e.g., linear algebra, differential equations, etc.) with a grade of C or 
better. Some students had completed several additional education and mathematics courses. 
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The interviews consisted of a series of tasks and problems with many tasks asking the students to 
construct and represent a relationship between quantities in a dynamic situation. Each interview was 
videotaped and these videos were digitized for analysis. Two members of the research team were 
present at each interview, and for each interview, the interviewers took field notes and discussed 
observations and insights afterwards. Upon completion of the interviews, members of the research 
team viewed the videos and selected instances of student activity that revealed insights into the 
students’ thinking. The research team then met to discuss their observations and used an open 
(generative) and axial (convergent) approach (Strauss & Corbin, 1998) to construct tentative themes 
we observed across students. Upon further analysis, themes were refined by comparing and 
contrasting different students’ activities. Through this process of constructing, refining, and re-
refining, the research group reached a consensus on themes that characterized the students’ activities 
on the cone problem. 

Task Design – The Cone Problem 
At the start of the interview, we presented students with a video of a growing and shrinking cone 

with a fixed slant angle. The height of the cone increased and decreased at a constant rate with 
respect to the video playback (Figure 1). We then gave the students the following prompt, “Watch 
the video, which illustrates a cone with a varying height. Sketch a graph of the relationship between 
the height of the cone and the outer surface area of the cone.” 

  
Figure 1: Dynamic Image of Cone 

Saldanha and Thompson (1998) described a student’s activity as he considered the relationship 
between two similar quantities (e.g., length)–a car’s distances from two fixed points as the car 
traveled along a straight line. We extended this type of situation to involve the covariation of two 
quantities of different attributes: length and surface area. We also designed the task so that the 
situation lent itself to reasoning about amounts of change between the two quantities (e.g., for 
successive equal changes in height, the outer surface area of the cone increases and the change in the 
outer surface area also increases). We consider Saldanha and Thompson’s (1998) task to be much 
more complex (imagistically) in this regard. We also note that we designed the task so that the 
students would not have a memorized formula readily at hand, although we hypothesized that 
students may attempt to construct or recall such a formula.  

Results 
We organize the students’ solution approaches to the cone problem into four themes (Table 1). In 

what follows, we describe these themes including the relationships between students’ images of the 
situation and their solution activity. 

 

Predetermined Relationship 
Students classified in the “Predetermined Relationship” theme used their initial image of the 

situation to dictate all further actions and conclusions. These students quickly came to a conclusion 
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about the relationship between height and surface area based on some imagistic or physical aspect of 
the cone (e.g., the cone growing and shrinking in a ‘smooth’ or ‘constant’ manner). Instead of further 
analyzing the situation in an attempt to justify their claimed relationship, the students assimilated all  

Table 1: Student Solution Approach Themes 
Theme Name Theme Description Students 

Predetermined 
Relationship 

The student uses some imagistic aspect of the situation to reason about 
the relationship of the quantities. No fundamental changes of image 
occur from his/her initial observation. 

Polly, Alice, 
Roz 

Formula Values Determine 
Relationship 

The student derives a formula to obtain specific numbers to determine 
and investigate the relationship between the quantities. 

David, Kate, 
Terrence 

Formula Structure 
Determines Relationship 

The student derives a formula and uses properties of the formula to 
determine the relationship. 

Angela, 
Audrey 

Images of Covariation 
Determine Relationship 

The student uses their image of the situation to determine the directional 
change and amounts of change of the two quantities under 
consideration. 

Caroline, 
Trish 

 
subsequent actions and products in terms of their initial claim. For instance, if the students 
determined a formula, they described the formula in terms of their initially stated relationship 
between the quantities; the students did not intend the formula to be for testing or verifying their 
relationship. Most notably, the students maintained their initial conclusions even when we directed 
them toward particular aspects of the situation or their activity that we thought would contradict their 
initial conclusions. 

   
(a)           (b) 

Figure 2:  Roz’s Solution to the Cone Problem 

For example, after concluding the relationship was linear and drawing a graph to reflect that 
relationship (Figure 2a), Roz drew the 3-D cone in a way that identified (from our perspective) 
amounts of change of surface area for successive equal changes of cone height (Figure 2b). When 
asked to describe how the changes in surface area for each successive height were changing, she 
responded, “going off this idea that it’s a constant change in surface area,” and then described that for 
equal changes in height, there was an equal change in surface area. Roz maintained that the surface 
area changed by constant amounts, even after the interviewer repeatedly prompted her to identify and 
shade different sections that represented the change in surface area. This response illustrates that Roz 
already had a pre-determined linear relationship in mind when reasoning with her picture of the 
situation (Figure 2b) to identify and explain how the changes in surface area varied. 

Formula Use  
We identified two themes in which students constructed formulas to model surface area (but not 

always in relation to only the height of the cone) and used their formulas to reason about the 



www.manaraa.com

Mathematical!Processes:!Research!Reports! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

367!

relationship between height and surface area. We make two distinctions between these students’ 
solutions based on how they used their formula to make conclusions about the relationship.  

Formula Values Determine Relationship. Some students used formulas to compute numerical 
values. Students in this theme constructed an initial image of how the quantities were related (e.g., 
both the surface area and height increase as the cone grows), but were then perturbed by whether the 
quantities covary at a constant or changing rate of change. Each student then moved to determine a 
formula by which they could calculate paired (height, surface area) values. As no actual values were 
given to the students to describe the cone, the students created hypothetical values. After determining 
a formula, each student calculated the area for several specified values of height, with these height 
values increasing in equal increments. Each student then determined the relationship by comparing 
her or his calculated values (e.g., determining the difference between successive surface areas). We 
note that despite each student creating a different, technically incorrect formula, all students in this 
theme concluded (accurately) that the changes of surface area increased for equal changes of height. 

David is one of the students who engaged in this type of reasoning. After watching the video, 
David conjectured that the surface area is increasing at an increasing rate with respect to height. 
Having difficulty using the situation or a diagram to justify his conjecture, he created a formula to 
compute surface area. David used the height, h, and average radius, rave, (which he described as half 
the radius) of the cone in combination with his prior knowledge of surface area (SA) of a cylinder to 
derive SA = 2π(rave)h. He assumed the height and radius were equal to get the final formula, SA = 
2π(h/2)h. After first trying to use this formula to determine changes of surface area for arbitrary equal 
changes of height, he moved to using specific (numeric) height values to compute surface area values 
(Figure 3). He then computed differences in surface area values to conclude that the changes of 
surface area increase for equal changes of height.  

 
Figure 3: David’s Solution to the Cone Problem 

Formula Structure Determines Relationship. Whereas students grouped in the previous theme 
used their formulas to calculate and compare numerical values, students classified in this theme 
inferred how the quantities covaried based on the structure of their formulas. Specifically, the 
students determined a surface area formula with a multiplicative relationship between the quantities 
(i.e., height times height or height and radius of the base multiplied together with an assumption that 
the height and radius were proportionally related) and thus concluded that as height increased, 
surface area increased at an increasing rate.  

To illustrate, after watching the video, Angela concluded that the surface area of the cone 
increased as the height increased. She then created a 2-D image to represent surface area by drawing 
a circle with a wedge removed (Figure 4a). Angela wrote the formula A= πr2, where r represents the 
radius of her circle (or, equivalently, the slant height represented by x). Although she understood that 
the formula would not produce accurate surface area values without further information or 
modification, she reasoned that the formula was correct in its general structure and drew a graph 
(Figure 4b) that she associated with that formula. She claimed, “I know that since this is r-squared 
that it’s going to be, the surface area is going to be a quadratic…path of a parabola” After using a 
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linear function to relate the radius of the circle (or, equivalently, the slant height) to the cone’s 
height, she further justified her graph by noting that the quadratic nature of her modified formula (A= 
‘some quadratic in h’). She added, “I know what a parabola looks like and I know it’s increasing at 
an increasing rate.” Although Angela drew several diagrams to reason about an increasing surface 
area (see Figure 4a), she did not use these diagrams to describe changes in surface area for equal 
changes in height. Rather, Angela relied on the quadratic nature of the formula for surface area to 
make conclusions about the graph and relationship; she reasoned with a formula structure-
covariational relationship association. 

  
(a)   (b) 

Figure 4: Angela’s Solution to the Cone Problem 

Images of Covariation Determine Relationship 
The students classified in this theme relied solely on their image of the situation to determine 

how the surface area and height of the cone covaried. The students maintained a 3-D image of the 
situation, and they were the only students to exclusively leverage a 3-D image of the situation to 
describe the rates of change of surface area and height of the cone. Specifically, Caroline and Trish 
imagined the surface area and height increasing continuously. Each student also imagined changes of 
surface area as successive strips for equal changes of height. The students used this image of the 
changes of surface area to compare successive changes in surface area.  

As an example, after reading the prompt, Caroline drew three cones corresponding to equal 
changes in cone height (Figure 5a) and used these diagrams to determine how the quantities covaried. 
Caroline stated, “When you add some height, you add an extra strap around it [re-draws 2nd cone 
bigger than 1st, draws strap with bottom of the strap at the height of 1st cone, seen in Figure 5b]. 
Then you add some height, then you add a strap above that [re-draws 3rd cone, bigger than 2nd with 
strap starting at height of top of 2nd cone seen in Figure 5b].” She continued, “And if I were 
drawing these, to scale, this [shades in strap in 3rd cone] would have more surface area then this 
[shades in strap in 2nd cone]. So that means for equal changes in height [marking changes of height 
in her diagram see in Figure 5b], the change in surface area increases.” Caroline used this reasoning 
to conclude that the surface area increases at an increasing rate with respect to height, and she 
produced a graph to reflect this relationship. Further, she identified how changes in surface area were 
represented on her graph (represented in orange on Figure 5c). 

     
(a)   (b)    (c) 

Figure 5: Caroline’s Activity and Solution to the Cone Problem 
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Discussion 
We identified themes in the students’ activities that provide insight into ways these students 

modeled a dynamic situation. These themes are not intended to be evaluative or exhaustive; we do 
not claim preference of one theme over another, and there are many other possible solution 
approaches to this task. By comparing the students’ activities across these themes, we note 
differences in how students’ solution approaches are related to and influenced by their images of the 
situation. Three of the ten students (classified in the first theme) focused on a particular physical 
phenomenon of the situation (the constant or smooth growth of the cone), and they generalized 
properties of this phenomenon to the relationship between height and surface area. Five of the ten 
students relied on values produced from (second theme) or the attributes of (third theme) a formula to 
describe the relationship between the quantities. Although these five students leveraged an image of 
the situation that was attentive to the quantities of height and surface area, their use of this image was 
primarily static (e.g., using a fixed state to determine a rule). Only two of the ten students (fourth 
theme) used their images of the situation exclusively and continually reconstructed these images to 
reason covariationally.  

We were surprised that only two of the ten students relied exclusively on leveraging images of 
the situation to represent amounts of change. Many students (e.g., Roz, Angela) engaged in activities 
that we believed had the potential to support them in reasoning emergently about the relationship 
(e.g., drawing diagrams and shading), but such activity was often assimilated in terms of previously 
made conclusions. This result was especially unexpected considering that in previous interview tasks 
several of the students classified in the first to third themes modeled relationships in dynamic 
situations by strictly leveraging images of the situation. One possible explanation for this result is 
that these students had learned the formula for the surface area of a cone in their prior school 
experiences. Hence, the students aimed to remember or to derive this formula rather than attempt to 
use images of the situation to construct the relationship. 

Future Research 
Several students’ initial images of the situation relied on the video showing a constant change of 

height with respect to (implicit) time (first theme). Thus, we ponder how these students would 
engage in a task in which the cone’s height grows at a non-constant rate or the students are able to 
control how the height varies. Additionally, several students persistently attempted to derive a 
formula for the relationship with their subsequent actions relying on their formula. Future researchers 
might be interested in comparing how students engage in situations that lend themselves to formulas 
and situations that do not. This would give insight into how students reason and rely on formulas and 
the consequences of such reliance, especially with respect to nuances in students’ covariational 
reasoning (Carlson, Jacobs, Coe, Larsen, & Hsu, 2002; Johnson, 2015b). 

Although some students maintained viable images of the quantities in the situation (from our 
perspective), they had difficulty reasoning about and comparing corresponding changes in the 
quantities. Moreover, even when we directed the students to consider how changes in the quantities 
might be identified in the context of the situation, some students identified what we perceived to be 
increasing amounts of change, yet argued that these amounts of change were equal. We envision that 
further investigation into students’ images of change (Castillo-Garsow et al., 2013) would help 
explain these seemingly contradicting activities.  
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